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Summary

In this paper, stability of a journal bearing is numerically
predicted when an unid irectional periodic external load is
applied. The analysis is performed using a cavitation algorithm,
which mimics the JFO theory by accounting for the mass
balance through the complete bearing. Hence, the history of
the film is taken into consideration. The loading pattern is
taken to be sinusoidal and the frequency of the load cycle is
varied. The results are compared with the predictions using
Reynolds boundary conditions for both film rupture and
reformation. With such comparisons, the need for accurately
predicting the cavitation regions for complex loading patterns
is clearly demonstrated. For a particular frequency of loading,
the effects of mass, amplitude of load variation and frequency
of journal speed are also investigated. The journal trajectories,
transient variations in fluid film forces, net surface velocity
and minimum film thickness and pressure profiles are also
presented.

Introduction

In order to effectively analyze the performance of a bearing
for various industrial applications, a transient analysis is

required. However, the analysis of dynamically loaded
bearings are usually performed for known/predicted journal
trajectories or by using linearized theory to predict the whirl.
The stability of the system under a known journal trajectory
can not be determined since the equations of motion are not
considered. The linearized theory assumes the equilibrium
position as the starting point. By perturbing the journal center
a small amount from equilibrium, the stiffness and damping
coefficients, critical mass and the whirl ratio are determined.
The critical mass is important since it is a measure of stability.
The nonlinear film forces are linearized for the motion to be
analytically tractable. The linearized theory can predict the
threshold of stability but not postwhirl orbit details. On the
other hand, nonlinear transient analysis does not attempt to
linearize the equations of journal motion and hence determines
the locus of the journal for the operating conditions. The
stability of the system can be determined from the journal
locus.

Holmes (1960), in an analysis of the vibration of a rigid
shaft for short sleeve bearings, determined that the occurance
of whirl is a function of steady state eccentricity, angular
frequency and clearance. The plot of the "whirl boundary"
was based on the short bearing approximation and the Gumbel
boundary conditions. Mitchell, Holmes and Byrne (1965)
used nonlinear theory with short/long bearing approximations
to determine the characteristics of oil whirl of a full journal
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bearing with the aid of analog and digital computation as well
as experimental data. Capriz (communications on Mitchell
et al; 1965) considered cavitation along with the nonlinear
motion and presented a stability diagram. However, the
relative movement of the cavity to the minimum film thickness
was not determined and the cavity was assumed to rotate at
the whirl frequency. Jakobsen and Christensen (1968) analyzed
nonlinear transient vibrations under a constant external load
and presented the journal loci for various journal masses and
starting positions. Akers, Michaelson and Cameron (1971)
extended the work of Holmes (1960) and Capriz (1965) for
finite bearings and determined the journal trajectories for
both cavitated and uncavitated bearings and for various L/D
ratios. The out of balance load and friction force were also
considered in the analysis. Kirk and Gunter (1970) used a
short bearing approximation in a transient analysis of journal
bearings. Badgley and Booker (1969) analyzed the effect of
initial transients on turborotor stability. Short bearing (Ocvirk),
long bearing (Sommerfeld) and finite bearing (Warner)
approximations were used to model the film and the film
was assumed to extend 180' between variable limits. The
rest of the bearing was taken to be cavitating at zero pressure.
Allaire (1979) presented the stability analysis of finite journal
bearings using linearized theory. Majumdar and Brewe (1987)
analyzed the stability of a rigid rotor supported on a journal
bearing, under unidirectional constant, periodic and variable
load patterns. The analysis included nonlinear motion but
only Reynolds boundary conditions were used for film rupture
and reformation. It has been clearly brought out in the above
mentioned papers that while linearized theory can predict the
threshold of stability due to small perturbations about the
equilibrium point, the details of postwhirl orbit and occurance
of stable limit cycle can be determined only by using a
transient nonlinear analysis.

The determination of hydrodynamic force components
depends on the film model used. Most of the above analyses
were based on the restrictive assumptions of short or long
bearings. The Gumbel and Swift-Stieber (Reynolds) boundary
conditions treat the cavitation in a superficial manner. In
dynamically loaded bearings, the cavitation boundary will
vary in size, shape and location, and therefore, the usual zero
pressure and pressure gradient boundary conditions will be
inadequate to handle the situation. The instantaneous pressure
distribution and the location of film boundaries depend not
only on the instantaneous position of the journal due to its
motion but also on the history of the location of the cavitation
boundaries preceeding the instant under consideration.
Jakobsson-Floberg (1957) and Olsson (1965) derived boundary
conditions (JFO theory) for film rupture and reformation by
imposing conservation of mass within the cavitated region
and at the boundaries. The theory assumes that the lubricant
is transported through the cavitated region in the form of
striations extending between the boundaries. Elrod (1981)
introduced a cavitation algorithm which conserves mass
through the entire hearing and automatically predicts the film

rupture and reformation boundaries. Brewe (1983) and
Paranjpe and Goenka (1989) applied this algorithm to analyze
dynamically loaded bearings and found excellent agreement
with experimental data.

In this present work, the stability of the journal bearing is
analyzed using the nonlinear journal motion theory. The
cavitation algorithm is used to predict the full film and cavitated
regions and to determine the fluid force components. The
predicted journal trajectories for the periodic loading patterns
using the cavitation algorithm are compared with the
predictions using Reynolds boundary conditions for both film
rupture and reformation. The main objective of this study is
not only to analyze the system response for the dynamic
loading pattern; but also to highlight the need for considering
the film history during such situations. The effect of mass,
amplitude of load variation and journal speed are also
investigated for a particular frequency of loading.

Nomenclature

a 	 amplitude of periodic loading

c	 radial clearance

e	 eccentricity

Fr	radial component of fluid film force

FO	circumferential component of fluid film force

g	 switch function

h	 film thickness

h	 nondimensional film thickness [h/c]

L	 bearing length

L/D	 length to diameter ratio of the bearing

M	 mass of the system

M	 nondimensional mass parameter [Mcw2 /Wb]

p	 fluid pressure

Pa	 ambient pressure

P,	 cavitation pressure

R	 residual

r	 bearing radius

t	 time

U	 net surface velocity

Vf volume occupied by fluid film

V t total volume of fluid element

W applied load at any instant

Wb base load of periodic loading

co-ordinate axis in circumferential direction

z	 co-ordinate axis in axial direction

P	 bulk modulus of fluid

Ox	 grid spacing in x direction
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S	 central difference operator

F_	 eccentricity ratio

µ	 fluid Viscosity

P	 fluid density

PC	fluid density at cavitation pressure

0	 attitude angle

W	 angular coordinate relative to maximum film

thickness location

Q	 frequency ratio [(o
P / w]

c0	 angular velocity of the journal

(0	 frequency of periodic loading

Subscript

i	 nodes in circumferential direction

j	 nodes in axial direction

0	 initial value

Superscript

it	 iteration number

*	 current value

Reynolds Equation

The pressure profile of the fluid film within the bearing
clearance is governed by Reynolds equation, which is written
in two dimensional, unsteady form, as

dh + d( U h)— d h 3 dp _ d h 3 dp	
0 (1)

dt dx I\ 2 J dx 12µ dx) dz C 12µ dz ) _

The above differential equation is applicable only within the
full film region. The Reynolds boundary conditions to
determine the extent of film region can be expressed as

p ( x I, z ) = p(x 2 ,z) = 0

dp(x^,z)= ^(x 2 ,z) =0 	 (2)

where x l and x2 are the circumferential coordinates
corresponding to film rupture and reformation respectively.

Universal Equation

Elrod and Adams (1974) developed an "universal equation"
which conserves mass and is applicable for both full film and

cavitated regions and also across the boundaries. The two
dimensional form of the universal equation can he written as

d(9h) + d hUO Ph i do + d — Ph 3 dB — 0

dt	 dx 2	 12µ
9
 dx	 dz	 12µ

9
 dz

(3)

where the independent variable 0 is defined as

P in full film region (o? 1)

o = PC
V

in cavitated region ( o < 1)
Vt

g, the switch function introduced to remove the pressure
gradient term in the cavitated region is defined as

1 in full film region (o ? 1)
g =

0 in cavitated region (a < 1)

and the bulk modulus P which relates the pressure and den-
sity of the liquid is defined as

P=P-!t =ePde

Since, the mass conservation through the entire bearing is
taken into account via the universal equation, the boundary
conditions for film rupture and reformation need not be
explicitly specified. Within the full film region (g = 1),
equation (3) results in a compressible form of the Reynolds
equation.

Assuming that the bearing is stationary, in the case of
statically loaded bearings the surface velocity is only due to
the rotation of the journal. In dynamically loaded bearings,
the journal center also moves (whirls). In such cases,
superimposing the motion of journal on the rotation, the net
surface velocity will be

	

U = rl w-2  dO l	 (4)

Since the journal motion is superimposed on the rotation, the
angular frame of reference remains constant (say maximum
film thickness) and the film thickness is determined from

h =1 +,, cos yi	 (5)
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Equations of Journal Motion

Fora journal at a position other than its equilibrium position,
the plane motion, due to the unbalanced fluid forces, is
described by the following scalar nonlinear equilibrium
equations, along and normal to the line of centers (fig. 1),
respectively,

z	 2

Mc d	 e d
	

_ -Fr + W cos o	 (6)
dtz 	dt

Mc e	 + 2( 1r	 FB - W sin 0	 (7)
dt 2 	l dt	 at)

The fluid film forces Fr and Fe are determined from integrat-
ing the pressure distribution, which is obtained by solving
equations (1) or (3) and using the following integrals

Frf
L/2 

fO

p2n

	

L/2 
	 Cos V dV dz	 (8)

f

L/2 27r
Fe = 
	 J 

p sin V d yi dz	 (9)
L/2 0

Periodic Load

The type of periodic dynamic loading envisaged is of
sinusoidal variation, according to the following relationship

W= Wb [l+a p sin ((0P t)) = Wb [1+ a P sin (S2o)t)] (10)

where Wb is the base load, ap is the amplitude coefficient,
t1)p is the frequency of periodic loading and Q is the ratio of
load cycle frequency to journal frequency.

Numerical Formulation

Cavitation Algorithm

A modified cavitation algorithm, an offshoot of the Elrod
algorithm, using type differencing procedure was developed
by Vijayaraghavan and Keith (1989). The resulting formulation
is simply stated below as the details of the development can
be obtained from this paper.

Convection Flow.—The convection flow term exists both in
the full film and cavitated regions. This term is to be one sided
upwind differenced in the cavitated region and is centrally
differenced in the full film region.

u 15

2 Sx 
(0h) I t = 2 2Ax [gj,,,(0h),,,

+ (2 - g i+t/2 - g i-t/z) (0 h ) i - (2 - g i-1/2)(0 h);-t

(11)

where	 git1R =
g; + g;tt

2

The above formulation is based on the implicit assumption
that the surface velocity U is positive. However, if the
velocity is negative, then this flow term must remain one
sided upwind differenced in the cavitated region (thus, forward
differenced relative to original grid scheme), to properly
describe the physics of the problem. In such cases, the
following formulation shall be used

When the surface velocity reverses during the course of the
computation, equations (11) and (12) can be combined and
written in a more compact and efficient form as

( 2 Sx (0h) J'
 
= 2 2Ax 

[ ( 0h ) i+t - ^0h^i-tJ+ I 2 I 2Ax

+9i+1/2 -1) (9h)+1+(2 - 8;+1/2-g;-t/2 )(0h),+(9;+1/2-1)(0h),_,

(13)

Since the formulation of equation (3) is based on the
assumption of a compressible film, the resulting algorithm
also has 0 in the full film region. For sufficiently large
values of (3, the 0 values will be very close to unity and
hence this assumption does not introduce appreciable error.
Alternately, while writing the code, the effect of 0 can be
neglected in the full film region (g i-I = gi = g i + i = 1) resulting
in a formulation equivalent to ah/ax. Also, in order to ensure
one sided differencing near the reformation boundary, i.e.,
when g i-1 = g i = 0, gi+1 = 1, U > 0; g i+112 is set to zero.

Pressure Induced Flow.—The pressure induced flow term
in the x direction is differenced as

8x(-h3g 
6x - Axz 1 h +1/I gi+t(8;+1-1)

;	

1-(h3 t/2 +h am t^ l00i-1 ^ +h i-1/2 g;-t(e;-1-1)

(14)

ff
	 •

2 3 
(61h)= 

2 21	 2-g;+1/2)(0h)i+1
i

-(2-gi+t/2-gi-1/2)(0h)i-gi-1/2(0h);-t] (12)
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The expression for the flow in the z direction can be written
in similar fashion.

where 0* is the currently available value of 0. At every time
level, iteration is carried out by updating 0* until AO =
(0-0 * ) approaches zero.

Equation (3) applied to equation (18) produces

Numerical Procedure

Reynolds Equation

Equation (1) is discretized in finite difference forms in
terms of the unknown variable p and numerically solved using
a successive relaxation procedure either in explicit or implicit
form. When the finite difference formulation is cast in
successive line over relaxation (SLOR) form, the resulting
algebraic equations can be written as

Ai .jpn+l + Bi,jpnj t +C i,jp llj = Di ,jpnj-i + Ei ,jp j+1 + Fi,j

(15)

where the coefficients A Biil and C,,., and right hand
side of equation (15) are known. The subscripts i and j
represent grid points in the circumferential and axial
directions respectively and n denotes the iteration number.
The system of equations for every j are simultaneously
solved. After one sweep is completed, the resulting negative
pressures are set to zero. The procedure is repeated until the
pressure values have converged according to the following
convergence criteria

p1j 1- pig 

5 10 -3	(16)
E Pij

Cavitation Algorithm

In order to obtain time-accurate transient solutions, equa-
tion (3) is solved using equations (13) and (14) by combining
an approximate factorization method with a Newton iteration
procedure. The details of the procedure are discussed in detail
by Vijayaraghavan and Keith (1990). Hence, only the overall
idea is presented here.

Equation (3) is a function of 0 only and can be represented
by

f(9) = 0	 (17)

where f is an operator for equation (3). The Newton iteration
for a solution to equation (17) is,

f(0 )+ ae e_B*l(e-e*)=0	 (18)

At + dx aio + dx 
(all) 

dx + dz (a2z) dz J 
AO +f(B) 	 =0

(19)

where aio = 2 h , ai1 = a22 = - 1P h 
3

Equation (19) can written in the following operator form

N A9 + R = 0 (20)

where N is an operator, AO=(O n+1 - 0*) is the correction and
R is the residual at 0*, or, a measure of how well equa-
tion (3) is satisfied at 0*. The operator N is defined as a
product of two operators, which are approximate factors of f
and written as

N = BN X N Z 	 (21)
where

Nx=1+ 
l d 

alo+ 
1 d (a11) d

B dx	 B dx	 / dx

NZ=1+ 1 d (a22) d
B dz	 dz

B= h—
At

The solution is obtained in two steps as follows

Step I	 NXA6 = - B

Step 2:	 NZAg = A9

In the first step, A9 is obtained by sweeping in the x direction
(along a constant axial co-ordinate line). The final value of
correction AO is obtained in the second step by sweeping in
the z direction (along a constant circumferential co-ordinate
line). The approximate factorization technique has been found
to be robust and efficient .

Equations of Motion

Equations (6) and (7) are two scalar, coupled, nonlinear
ordinary differential equations. These equations are integrated
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simultaneously using a fourth order Runge-Kutta method for
known values of M, c, W, Fr and Fe and initial values of,
E, de/dt and do/dt. The fourth order Runge-Kutta method
is considered to be the stansard method for solving nonlinear
differential equations, paticularly with non-smooth profiles.

The integrations to determine the force components, F r and
Fe (eqs. (8) and (9)) are performed using Simpson's Rule.

Solution Procedure

A submerged journal bearing without any feed groove
arrangement is considered in this analysis. The axial ends of
the bearing are maintained at ambient pressure and the
cavitation pressure is taken to be absolute zero. Due to axial
symmetry, only one half of the bearing is analyzed. Initially
the bearing is assumed to be filled with lubricant at ambient
pressure and released at an arbitrary location other than its
equilibrium position (table 1). With Reynolds equation, at
every time step, a converged pressure distribution is
determined. Hence, the pressure distribution is only a function
of the instantaneous eccentricity ratio. However, the pressure
distribution of the previous time step is considered as the first
iteration value, for the purpose of verifying the convergence
according to equation (16). Whereas, with the cavitation
algorithm no such convergence is sought. The pressure
distribution is obtained by marching in time. Equation (3) is
solved to determine the current 0 distribution based on the 0
distribution at the previous time step and the current value of
the eccentricity ratio. At every time step, the switch function
distribution is updated. Thus, oil film history in the cavitated
region is taken into account at every time step. The Newton
iterations are performed, if necessary, to reduce the residuals
to a low level (0(10-5)).

From the pressure profile the force components Fr and F8
are computed. The applied load values at every time step are
also determined according to equation (10). Then the equations
of motion, i.e., equations (6) and (7), are solved for known
values of M, c, W, Fr and Fe and initial values of E, 0, de/dt
and do/dt, to determine the new values of e and 0. To begin
the process, dE/dt and do/dt are assumed to be zero. The
procedure is repeated and the trajectory of the journal, forces
developed by the fluid film, net surface velocity, minimum
film thickness and the pressure distribution are recorded at
every specified time interval. Analysis with both methods are
performed for the same axial boundary conditions, same grid
arrangement and same time steps. The computational grid
has 49 nodes in circumferential and 15 nodes in axial directions.
The codes are vectorized and the CRAY XMP super computer
is used. The time step of 10 -5 sec is used and a typical cpu
time on the CRAY was 120 sec per journal revolution. Each
case is run for 10 journal revolutions. The time required for
one load cycle depends on the frequency ratio, Q.

Results and Discussion

To determine the effect of frequency of periodic loading,
for the same load cycle, the frequency ratio Q is varied from
0.25 to 3.0. The analyses are performed twice, using the
cavitation algorithm and Reynolds equation. The solutions
from the cavitation algorithm are compared with the solutions
of the Reynolds equation with Reynolds boundary conditions.

When Q = 0.25, one load cycle occurs at every four journal
revolutions. Figure 2 compares the journal trajectory, fluid
film forces, net surface velocity and the minimum film
thickness predicted by both methods for this case. Although
the journal trajectory predicted by both methods is similar, the
cavitation algorithm predicts larger eccentricity values. This
can also be observed in the differences in the minimum film
thickness values and the transient forces developed by the
fluid film. At times, the radial component of the force varies
by as much as 30 percent. The cavitation algorithm predicts
larger forces and smaller minimum film thickness values.
The differences in the variations of net surface velocity between
the methods are not significant. However, it is interesting to
note that the velocity becomes negative for a brief period of
time. During such occasions, it is as though the journal
rotates in the opposite direction.

Figure 3 represents the comparison of the journal trajectory,
fluid film forces, velocity and minimum film thickness when
92 = 0.50. While both methods predict that the journal will
attain a limit cycle at high eccentricity values, the cavitation
algorithm predicts sharper changes in the trajectory. For this
frequency of loading, very large fluid film forces are predicted
by the cavitation algorithm. The radial component of the
force attains values as much as three times the values predicted
when Q = 0.25 (fig. 2). Reynolds boundary conditions do not
predict such high excursions in forces, although the peaks are
about doubled compared to the case for 0 = 0.25. Large
excursions in minimum film thickness are predicted by the
cavitation algorithm, although the minimum-minimum values
are smaller. The net surface velocity variations are similar,
except during the initial journal orbit, at which time the net
surface velocities are of opposite sign. If the motion of the
journal center encloses the bearing center, the angular velocity
of the journal and the angular velocity of the journal center
have the same sign. Thus, according to equation (4), when the
angular velocity of the journal center exceeds the angular
velocity of the journal, the net velocity becomes negative. In
this case, the cavitation algorithm predicts an initial journal
center orbit that did not enclose the bearing center. Thus the
downward motion of the journal center was of opposite sign
to the rotational direction resulting in a positive net surface
velocity. In this case also, the net surface velocity alternates
between positive and negative values. With the cavitation
algorithm, this situation causes a cavitated region to be formed
at both sides of the pressure hump. Instantaneous pressure



profiles at four events are presented in figures 4(a) and (b).
Figure 4(a) is the pressure profiles predicted by the cavitation
algorithm during the third load cycle when (1) the the pressure
developed is minimum, (2) the pressure developed is
maximum, (3) eccentricity is maximum and (4) the applied
load is zero. Figure 4(b) also indicates the same events
predicted using Reynolds boundary conditions, but at different
times. The instantaneous journal position and its cumulative
trajectory are also indicated in the figures. Generally, the
cavitation algorithm predicts larger pressure values and larger
cavitated regions. Reynolds boundary conditions do not predict
any cavitated region at minimum pressure, nor does it predict
two cavitated regions split by a high pressure fluid film region
for conditions (2) and (3) (figs. 4(a) and (b)). During this
loading pattern, the pressure profile and the cavitated regions
undergo dramatic variations in shape, size and locations.

As shown in figure 5, when 0 = 1.0, the journal trajectory
predicted by both methods are quite different. The cavitation
algorithm predicts a limit cycle around the bearing center line
while the predictions using Reynolds boundary conditions
indicate the movement of the journal limited to one side of the
bearing, the amplitude of the motion becoming progressively
smaller as it converges to a smaller eccentricity ratio. With
this frequency of loading, the force levels are much smaller
and the excursions are considerably reduced as compared to
the condition with Q = 0.5. The minimum film thickness
predicted by the cavitation algorithm is also much smaller.

Figure 6 is the representation of the conditions when Q =
2.0. When the cavitation algorithm is used, the journal barely
passes through the bearing center and the excursions are slightly
reduced with time. The predictions using Reynolds boundary
conditions indicate the journal movement was limited to one
side of the clearance circle and the journal excursions reduce
with time. The minimum film thickness predicted by the
cavitation algorithm also has wide fluctuations, with smaller
minimum values.

The transient conditions for Q = 3.0 are shown in fig-
ure 7. The journal trajectory predicted using the cavitation
algorithm has much smaller excursions as compared to the
trajectory predicted using Reynolds boundary conditions. In
both cases, the journal movement is limited to one side of the
clearance circle, with the amplitude of motion diminishing
with time. With Reynolds boundary conditions, the journal
trajectories for both Q = 2.0 and Q = 3.0 are similar. Further
increases in the loading frequency produces nearly similar
journal trajectories using both methods. Due to the high
frequency of periodic loading, the variations in load values
occur before the fluid film can react to such variations. Hence,
the journal trajectories almost simulate the condition of a
constant load.

In all the above cases, the cavitation algorithm predicts
smaller minimum-minimum film thickness values and large
fluid film forces. When the dynamic loading pattern undergoes
such large variations, the memory effect of fluid film becomes
an important criteria. Modeling the problem accounting for

mass conservation and consideration of cavitation regions are
very important during such situations. With periodic loading,
the journal generally attains a limit cycle, the limit cycle
being smaller when the frequency of the periodic loading is
larger.

Having analyzed the effect of periodic loading on the
perfonnance of the journal bearing, it is desired to investigate
the effects of other parameters, viz., mass of the system,
amplitude of load variation and journal speed, on the stability
of the bearing. The case of Q = 0.5 is considered for this
study due to the occurance of large excursions in the forces
during this loading frequency. Only the cavitation algorithm
is utilized for this study.

The mass of the system is varied from one tenth to five
times the value used for the frequency effect study. The

journal trajectories are shown in figure 8. When M = 0.5, the
journal trajectory almost immediately settles into a limit cycle;

but only on one side of the clearance circle. When M = 2.5,
the journal oscillations grow with time and approach a limit
cycle around the bearing center. When the mass parameter is
larger, the journal trajectory attains the limit cycle faster and
at very high eccentricity ratios. Figure 9 compares the transient
variations in minimum film thickness for various mass
parameter values. With larger mass, the fluctuations are
diminished but the minimum-minimum film thickness values
are very small, nearly touching the bearing surface.

The periodic load amplitude was varied from unity to zero.
The journal trajectories are indicated in figure 10. With
smaller amplitude, the journal movements are only on one
side of the clearance circle. The smaller the amplitude the
smaller the journal excursion and the region of limit cycle.
This zero amplitude case essentially represents a unidirectional
constant load. The journal oscillations are damped out and it
will eventually reach its equilibrium position. The variations
in minimum film thickness are indicated in figure 11. For
smaller amplitudes, the minimum film thickness variations
are smaller and the mean values are higher as compared to
those at larger amplitudes.

The effect of variations in journal speed is presented in
figure 12. The frequency ratio 92 is, however, maintained
at 0.5. With the lower journal speed, the trajectory is on one
side of the bearing; however, growing in the amplitude of
oscillation. When the journal speed is increased, the journal
moves around the bearing center, attaining a limit cycle.
However, from the data it was observed that the lowest
minimum film thickness is obtained when the journal speed
is at 600 rpm.

Conclusions

A nonlinear stability analysis is performed on a system
supported by a plain journal bearing, under periodic dynamic
loading. A cavitation algorithm was used which conserves
mass and takes the oil film history into account. These
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solutions were compared with the solutions of Reynolds
equation using Reynolds boundary conditions for various
loading frequencies, amplitude of periodic loading, mass
parameter and journal speed. Comparisons on the journal
trajectories, fluid film forces, net surface velocity, minimum
film thickness and pressure profiles are presented.

(1) It was established that the oil film history is important
for these complex loading patterns.

(2) With periodic loading, the journal almost always attains
a stable limit cycle. When the periodic loading frequency is
half of the journal frequency, very large fluid forces are
developed and the journal whirls at large eccentricity ratios.
With further increase in frequency of loading, the film forces
are diminished, the journal oscillations are reduced and its
movement is restricted to only one side of the clearance circle.

(3) The mass plays a major part in the system response to
the loading pattern. With smaller mass, the generation of large
fluid film forces are avoided and the journal attains a stable,
smaller limit cycle.

(4) The amplitude of load variation also has a pronounced
effect on the stability of the system. The smaller the periodic
load amplitude, the smaller the journal excursions and film
force levels.

Stability analysis of dynamic loading patterns is very
important for designers in order for them to understand system
response. Nonlinear transient analysis and consideration of
cavitation effects along with oil film history are imperative
for such studies to model the system as close to the practical
situation as possible.

References

Akers, A.; Michaelson, S.; and Cameron, A.: Stability Contours for a
Whirling Finite Journal Bearing. J. Lubr. Technol., Vol. 93, no. 1, 1971,
PP• 177-190.

Allaire, P. E.: Design of Journal Bearings for High Speed Rotating Machinary.
Fundamentals of the Design of Fluid Film Bearings, S.M. Rohde, et al.,
eds., ASME, pp. 45-83.

Badgley, R. H.; and Booker, J. F.: Turborotor Instability: Effects of Initial
Transients on Plane Motion. J. Lubr. Technol., Vol. 91, no. 4, 1965,
pp. 625-633.

Booker, J. F.: Dynamically Loaded Journal Bearings - Mobility Method of
Solution. J. Basic Eng., Vol. 87, no. 3, 1965, pp. 537-546.

Brewe, D. E.: Theoretical Modeling of the Vapor Cavitation in Dynamically
Loaded Journal Bearings. J. Tribol., Vol. 108, no. 4, 1986, pp. 628-638.

Capriz, G.: 1965 see communications on Mitchell et al., 1965.
Elrod, H.G., Jr.; and Adams, M.L.: A Computer Program for Cavitation and

Starvation Problems. Cavitation and Related Phenomena in Lubrication,
Mechanical Engineering Publications, New York, 1974, pp. 37A1.

Elrod, H.G., Jr.: A Cavitation Algorithm. J. Lubr. Technol., Vol. 103, no. 3,
1981, pp. 350-354.

Holmes, R.: The Vibration of a Rigid Shaft on Short Sleeve Bearings.
J. Mech. Eng. Sci., Vol. 2, no. 4, 1960, pp. 337-341.

Jakobsen, K.; and Christensen, H.: Non-Linear Transient Vibrations in
Journal Bearings. Tribology Convention 1969, Proc. Inst. Mech. Eng.,
Vol. 183, pt. 3P, 1968-69, pp. 50-56.

Jakobsson, B.; and Floberg, L.: The Finite Journal Bearing, Considering
Vaporization. Transactions of Chalmers University of Technology,
No. 190, Guthenberg, Sweden, 1957.

Kirk, R.; and Gunter, E. J.: Transient Journal Bearing Analysis. NASA
CR-1549, 1970.

Majumdar, B. C.; and Brewe, D. E.: Stability of a Rigid Rotor Supported on
Oil Film Journal Bearings Under Dynamic Load. NASA TM-102309
(AVSCOM TR 87-C-26). 1987.

Mitchell, J. R.; Holmes, R; and Byrne, J.: Oil Whirl of a Rigid Rotor in 360
Journal Bearings : Further Characteristics. Proc. Inst. Mech. Eng.,
Vol. 180, pt. 1, no. 25, 1965-66, pp. 593-610.

Olsson, K.O.: Cavitation in Dynamically Loaded Bearing, Transactions of
Chalmers University of Technology, No. 308, Guthenberg, Sweden, 1965.

Paranjpe, R.S.; and Goenka, P.K.: Analysis of Crankshaft Bearings Using
Mass Conservation Algorithm. Tribology Transactions, Vol. 33, Num-
ber 3, 1990, pp. 333-344.

Vijayaraghavan,D.; and Keith, Jr., T.G.: Development and Evaluation of a
Cavitation Algorithm. Tribol.Trans., Vol. 32, no. 2, 1989, pp. 225-233.

Vijayaraghavan, D.; and Keith, Jr. T.G.: An Efficient, Robust, and Time
Accurate Numerical Procedure Applied to a Cavitation Algorithm. J.
Tribol., Vol. 112, no. 1, 1990, pp. 44-51.



Full film - - Cavitated
region

TABLE I.—BEARING DATA

L/D ----- 0.562
r m .1

c m 8.0 x 10-5
Pd N/m2 1.0133 x 105
P, N/m2 .0
M ----- 5.0
ap ----- 1.0

Wb N 40x103
(3 N/m2 1.72x 108
µ Pa.s .015
o^ rad/s 62.84 (600 rpm)
Q ----- .25 to 3.0
CO ----- .65

$p ----- .0

Figure 1.-Schematic diagram of journal bearing.
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CAVITATION ALGORITHM

PEYNOLDS B.C.

(a) Journal trajectory.

Figure 2.—Periodic loading (S2 = 0.25).
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CAVITATION ALGORITHM

REYNOLDS B.C.

(a) Journal trajectory.

Figure 3.—Periodic loading (Q = 0.50).
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Figure 4a.—Pressure profiles - cavitation algorithm (S2 = 0.50).
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Figure 4b.—Pressure profiles - Reynolds B.C. (Q = 0.50).
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CAVITATION ALGORITHM	 REYNOLDS B.C.	 CAVITATION ALGORITHM	 REYNOLDS B.C.

(a) Journal trajectory.	 (a) Journal trajectory.
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Figure 5.—Periodic loading (S2 = 1.0).	 Figure 6.—Periodic loading (S2 = 2.0).
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Figure 8.—Effect of mass on journal trajectory (i2 = 0.5).
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